Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents.

نویسندگان

  • L Casillas-Martinez
  • P Setlow
چکیده

Only a single superoxide dismutase (SodA) was detected in Bacillus subtilis, and growing cells of a sodA mutant exhibited paraquat sensitivity as well as a growth defect and reduced survival at an elevated temperature. However, the sodA mutation had no effect on the heat or hydrogen peroxide resistance of wild-type spores or spores lacking the two major DNA protective alpha/beta-type small, acid-soluble, spore proteins (termed alpha(-)beta(-) spores). Spores also had only a single catalase (KatX), as the two catalases found in growing cells (KatA and KatB) were absent. While a katA mutation greatly decreased the hydrogen peroxide resistance of growing cells, as found previously, katA, katB, and katX mutations had no effect on the heat or hydrogen peroxide resistance of wild-type or alpha(-)beta(-) spores. Inactivation of the mrgA gene, which codes for a DNA-binding protein that can protect growing cells against hydrogen peroxide, also had no effect on spore hydrogen peroxide resistance. Inactivation of genes coding for alkyl hydroperoxide reductase, which has been shown to decrease growing cell resistance to alkyl hydroperoxides, had no effect on spore resistance to such compounds or on spore resistance to heat and hydrogen peroxide. However, Western blot analysis showed that at least one alkyl hydroperoxide reductase subunit was present in spores. Together these results indicate that proteins that play a role in the resistance of growing cells to oxidizing agents play no role in spore resistance. A likely reason for this lack of a protective role for spore enzymes is the inactivity of enzymes within the dormant spore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of a significant role for the PerR regulator in Bacillus subtilis spore resistance.

Bacillus subtilis cells lacking the PerR repressor which regulates transcription of genes encoding oxidative stress protective proteins grew at 30-50% the rate of wild-type cells, and perR cultures accumulated rapidly growing suppressor mutants lacking the catalase whose expression is regulated by PerR. However, perR spores which retained the perR regulated catalase were obtained on plates. The...

متن کامل

Expression of Concern: Bacillus pumilus Reveals a Remarkably High Resistance to Hydrogen Peroxide Provoked Oxidative Stress

Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulo...

متن کامل

A suppressor of the menadione-hypersensitive phenotype of a Xanthomonas campestris pv. phaseoli oxyR mutant reveals a novel mechanism of toxicity and the protective role of alkyl hydroperoxide reductase.

We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyR(Xp)). The oxyRR2(Xp) mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H(2)O(2) and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2(Xp) mutant revealed a >10-fold increase in AhpC and AhpF level...

متن کامل

Oxidative stress response in Clostridium perfringens.

Clostridium perfringens, a strictly anaerobic bacterium, is able to survive when exposed to oxygen for short periods of time and exhibits a complex adaptive response to reactive oxygen species, both under aerobic and anaerobic conditions. However, this adaptive response is not completely understood. C. perfringens possesses specialized genes that might be involved in this adaptive process, such...

متن کامل

General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon.

The AhpC subunit of the Bacillus subtilis alkyl hydroperoxide reductase was identified as a general stress protein induced in response to heat or salt stress or after entry of the organism into the stationary phase. The ahp operon, encoding the two subunits AhpC and AhpF, was cloned and localized between the gntRKPZ operon and the bglA locus. Two-dimensional gel analyses revealed an especially ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 23  شماره 

صفحات  -

تاریخ انتشار 1997